

0960-894X(95)00395-9

ENANTIOMERICALLY PURE SYNTHESIS AND ANTIVIRAL EVALUATION OF [(2'S, 3'S)-BIS(HYDROXYMETHYL)AZETIDIN-1-YL] PURINE NUCLEOSIDES: ANALOGS OF OXETANOCIN-A

Shigeru Nishiyama, Yoshiko Kikuchi, Hiroko Kurata, and Shosuke Yamamura

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan

Takao Izawa, Takemitsu Nagahata, Ryuji Ikeda, and Kuniki Kato*

Research Laboratories, Pharmaceuticals Group, Nippon Kavaku Co. Ltd., Shimo, Kita-ku, Tokyo 115, Japan

Abstract: The enantiomerically pure synthesis of [(2'S, 3'S)-bis(hydroxymethyl)azetidin-1-yl] adenine **9** and -guanine **13** was achieved *via* construction of the base on the 1-amino-azetidine **4** and their anti-HSV-1 and -2, and anti-HIV-1 activities were evaluated.

Various compounds have been reported as potent and selective inhibitors of human immunodeficiency virus (HIV) targeted at the virus-encoded reverse transcriptase. At present, besides AZT (3'-azido-3'-deoxythymidine), ddl (2',3'-dideoxyinosine) and ddC (2',3'-dideoxycytidine) being the only approved drugs for the clinical treatment of AIDS, some very recently prepared nucleosides such as d4T (2',3'-didehydro-3'-deoxythymidine) and (-)-3TC (β-L-(-)-2'-deoxy-3'-thiacytidine, LamivudineTM) show very promising anti-HIV activity and selectivity. However, it is critical to search for new and less toxic anti-HIV agents which are not cross-resistant with the existing drugs. As part of our continuing studies on the preparation and antiviral evaluation of analogs of Oxetanocin-A 1 and COXT-G 2, we recently reported the first synthesis of [(2'S, 3'S)-bis(hydroxymethyl)azetidin-1-yl] adenine 9 and -guanine 13.

The key intermediate (2S, 3S)- N^1 -amino-2,3-bis(benzyloxymethyl)azetidine $\mathbf{4}^1$ was progressed to purine derivatives via an imidazole intermediate.² Treatment of compound $\mathbf{4}$ with ethyl N-(carbamoylcyanomethyl)formimidate³ gave the imidazole $\mathbf{5}$ in 42 % yield, which was converted into the hypoxanthine $\mathbf{6}^8$ in 60 % yield using triethyl orthoformate⁴. Compound $\mathbf{6}$ was successfully transformed into the adenine $\mathbf{8}$ via ammonolysis of the 2,4,6,-triisopropylbenzenesulfonate $\mathbf{7}^5$ in 35 % yield (2 steps). Finally, deprotection of $\mathbf{8}$ by transfer hydrogenolysis with 20 % Pd(OH)₂ on carbon and cyclohexene afforded the target compound $\mathbf{9}^9$ in 74 % yield (Scheme 1).¹²

BnO
$$\frac{N}{4}$$
 BnO $\frac{N}{5}$ BnO $\frac{N}{6}$ B

Scheme 1 Reagents and Conditions: 1) EtO-CH=N-CH(CN)CONH₂, EtOH, reflux, 30 min; 2) HC(OEt)₃, DMF,120 °C, 20 min; 3) 2,4,6-triisopropylbenzenesulphonyl chloride, Et₃N, DMAP, CH₂Cl₂, rt, 2 h; 4) NH₃, EtOH, sealed tube, 80 °C, 6 h; 5) 20 % Pd(OH)₂/C, cyclohexene, EtOH, reflux, 5h.

To obtain the guanine derivative, the imidazole **5** was reacted with benzoyl isothiocyanate⁶ to give the thiourea **10** in 74 % yield, which with methyl iodide in dilute sodium hydroxide yielded the methylthio derivative **11** in 95 % yield. Treatment of compound **11** with 2N-NaOH under reflux for 3h followed by neutralization of the reaction mixture with 2N-HCl provided the guanine **12**¹⁰ in 68 % yield. Deprotection of **12** by transfer hydrogenolysis with 20 % Pd(OH)₂ on carbon and cyclohexene afforded the target compound **13**¹¹ in 61 % yield (Scheme 2).

Scheme 2 Reagents and Conditions: 1) PhCONCS, CH $_3$ CN, reflux, 2 h; 2) 0.1 N-NaOH, MeI, rt, 2 h; 3) 2N-NaOH, MeOH, reflux, 3 h; 4) 20 % Pd(OH) $_2$ /C, cyclohexene, EtOH, reflux, 5 h.

Antiviral Activity: The newly synthesized compounds 9 and 13 were evaluated in vitro against HSV-1 and HSV-2 in Vero cells by a plaque reduction assay and HIV-1 in MT-4 cells by an indirect immunofluorescence assay, respectively (Table 1). Compounds 9 and 13 were found to demonstrate potent anti-HIV-1 activity at approximately the same level as ddI with EC_{50} values of 0.37, 0.46, and 0.46 μ g/ml, respectively. It is also noticeable that 13 was found to be 6-fold more active against HSV-1 and -2 than 9, but was 16-fold less potent than acyclovir. Both 9 and 13 were devoid of cytotoxicity against Vero cells at concentrations up to 100 μ g/ml.

	EC ₅₀ μ g/ml^a		
Compound	HSV-1	HSV-2	HIV-1
9	33.2	34.9	0.37
13	5.36	6.32	0.46
ddl	ND^b	ND	0.46
AZT	ND	ND	0.0032
acyclovir	0.32	0.39	ND

- a : Concentration required to inhibit HSV-1-, HSV-2-, or HIV-1-induced cytopathic effect by 50 %.
- b : Not determined.

In conclusion, in a series of novel azetidin-N-nucleoside analogs, we have identified [(2'S, 3'S)-bis(hydroxymethyl)azetidin-1-yl] adenine 9 and -guanine 13 as good inhibitors of HIV-1 replication. This encouraging antiviral activity prompts us to study comprehensive structure-activity relationships for this class of compounds, which are in progress in our laboratories.

References and Notes:

- Hosono, F.; Nishiyama, S.; Yamamura, S.; Izawa, T. and Kato, K. Bioorg. & Medicinal Chem. Lett., 1994, 4, 2083-2086. Hosono, F.; Nishiyama, S.; Yamamura, S.; Izawa, T. and Kato, K. Tetrahedron, 1994, 50, 13335-13346 and see the references cited therein.
- Initial attempts to synthesize the 6-chloropurine 15 from the azetidino-pyrimidine 14, obtained from compound 4 and 4.6-dichloro-5-formamidopyrimidine, by closure of the imidazole ring under a variety of standard reaction conditions for this transformation were unsuccessful.⁷

- Watson, A. A. J. Org. Chem., 1974, 39, 2911-2916. Leese, C. L. and Timmis, G. M. J. Chem. Soc., 1961, 3818-3820. Taylor, R. N.; Shaw, G.; Wilson, D. V. and Butler, D. N. J. Chem. Soc., 1961, 4845-4850.
- Richter, E.; Loeffler, J. E. and Taylor, E. C. J. Am. Chem. Soc., 1960, 82, 3144-3146.
 Harnden, M. R.; Jarvest, R. L. and Parratt, M. J. J. Chem. Soc. Perkin Trans., 1992, 2259-2263.
- 5. Gaffney, B. L.; Marky, L. A. and Jones, R. A. Tetrahedron, 1984, 40, 3-12.
- 6. Yamazaki, A. and Okutsu, M. J. Heterocyclic. Chem., 1978, 15, 353-358. Bhattacharya, B. K.; Robins, R. K. and Revankar, G. R. J. Heterocyclic. Chem., 1990, 27, 787-793.
- 7. Harnden, M. R.; Wyatt, P. G.; Boyd, M. R. and Sutton, D. J. Med. Chem., 1990, 33, 187-196.
- 8. Selected spectroscopic data for **6**: colorless foam, 1H NMR (400 MHz, CDCl₃) δ 2.71 (1H, m), 3.60 (1H, dd, J=5.4 and 10.7 Hz), 3.63 (1H, dd, J=5.4 and 10.7 Hz), 3.80 (2H, d, J=6.4 Hz), 4.00 (1H, t, J=7.4 Hz), 4.47 (1H, d, J=12.7 Hz), 4.48 (1H, t, J=7.4 Hz), 4.58 (1H, d, J=12.7 Hz), 4.59 (2H, s), 4.82 (1H, m), 7.19~7.36 (10H, complex), 7.89 (1H, s), 8.13 (1H, s), and 13.04 (1H, broad, D₂O exchangeable); 13 C NMR (100.5 MHz, CDCl₃) δ 31.9, 58.3, 70.8, 71.9, 72.2, 73.2, 73.3, 117.3, 127.5 (x2), 127.6, 127.7 (x2), 127.8, 128.3 (x2), 128.4 (x2), 137.9, 138.1, 140.9, 144.3, 148.5, and 159.3; HRMS m/z 431.2034 calcd for C₂₄H₂₅N₅O₃, found 431.2013.
- 9. Selected spectroscopic data for **9**: colorless foam, $[\alpha]^{23}D^{-}25^{\circ}$ (c 0.85, CH₃OH); λ_{max} (CH₃OH) 260 nm (ϵ 12,700); ^{1}H NMR (400 MHz, CD₃OD) δ 2.65 (1H, m), 3.59 (1H, dd, J=5.0 and 12.3 Hz), 3.65 (1H, dd, J=3.5 and 12.3 Hz), 3.88 (2H, d, J=5.8 Hz), 3.93 (1H, t, J=7.3 Hz), 4.39 (1H, t, J=7.3 Hz), 4.62 (1H, m), 8.20 (1H, s), and 8.24 (1H, s); ^{13}C NMR (100.5 MHz, CD₃OD) δ 34.1, 58.7, 63.5, 64.0, 75.2, 118.9, 142.2, 149.9, 153.4, and 157.5; HRMS m/z 250.1142 calcd for C₁₀H₁₄N₆O₂, found 250.1176.
- 10. Selected spectroscopic data for 12: colorless foam, ¹H NMR (400 MHz, CDCl₃) δ 2.68 (1H, m), 3.51 (1H, dd, J=4.4 and 12.0 Hz), 3.60 (1H, broad, D₂O exchangeable), 3.61 (1H, dd, J=5.1 and 12.0 Hz), 3.73 (2H, d, J=5.9 Hz), 3.92 (1H, t, J=7.4 Hz), 4.36 (1H, t, J=7.4 Hz), 4.47 (1H, d, J=12.3 Hz), 4.51 (1H, d, J=12.3 Hz), 4.53 (2H, s), 4.61 (1H, broad, D₂O exchangeable), 4.72 (1H, m), 6.43 (1H, broad, D₂O exchangeable), 7.18~7.34 (10H, complex), and 7.70 (1H, s); ¹³C NMR (100.5 MHz, CDCl₃) δ 31.8, 57.9, 70.6, 71.6, 71.7, 73.1, 73.3, 116.0, 127.4 (x2), 127.5, 127.6 (x2), 127.7, 128.3 (x2), 128.5 (x2), 137.5, 138.0, 138.2, 151.2, 153.3, and 159.3; HRMS m/z 446.2143 calcd for C₂₄H₂₆N₆O₃, found 446.2104.
- 11. Selected spectroscopic data for **13**: colorless foam, $[\alpha]^{25}_{D}$ -10° (c 0.38, H₂O); λ_{max} (H₂O) 255 nm (ϵ 13,200); ^{1}H NMR (400 MHz, D₂O) δ 2.68 (1H, m), 3.70 (1H, dd, J=7.0 and 12.3 Hz), 3.74 (1H, dd, J=4.3 and 12.3 Hz), 3.90 (2H, d, J=5.9 Hz), 3.98 (1H, t, J=7.9 Hz), 4.11 (1H, t, J=7.9 Hz), 4.48 (m), and 8.18 (1H, s); ^{13}C NMR (100.5 MHz, D₂O) δ 33.7, 59.8, 63.3, 63.7, 75.3, 115.9, 139.2, 152.6, 155.2, and 160.6; HRMS m/z 251.1018 calcd for C₁₀H₁₃N₅O₃ (M⁺+H-NH₂), found 251.1042.
- 12. Detailed discussion of the theoretical and spectroscopic analysis of the conformation (syn/anti) around the pseudo-glycosidic bond of compound 9 will be disclosed in due course.